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Abstract

A general mathematical approach is developed for the free vibration behaviour analysis of
multi-girder and multi-cell box bridges with a single or multi span, including the effects of the
transverse deformations of the bridge cross-section. The governing equations of motion and the
corresponding boundary and continuity conditions are derived via the variational principle of
virtual work following Hamilton’s principle. The model is general and valid for any boundary and
continuity conditions, and is applicable for multi-girder bridges with longitudinal and cross beams
and for multi-cell box bridges. The warping and the distortion of the bridge cross-section effects
are included in the proposed model. Closed-form solutions of the governing equations are derived
and the Newton–Raphson method is used to determine the eigenfrequencies. Numerical examples
are presented to validate the proposed model, and are also used to examine the accuracy of other
approximate models used in the analysis of bridges. The results of the proposed model are validated
through comparison with three-dimensional finite element models. The results reveal that the transverse
deformations decrease the magnitudes of the eigenfrequencies of the torsional mode shapes, as well as the
high flexural modes.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Loaded multi-girder and multi-cell box bridges undergo several deformation shapes, such as
flexural and torsional deformations (see Figs. 1a and b). In both types of bridges, they undergo
transverse deformations and distortion of the cross-section (see Fig. 1c). The transverse
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deformations and distortion of the cross-section are of great interest mainly in the analysis of
thin-walled bridges. The distortion of the cross-section yields a redistribution of the normal and
shear stresses in the longitudinal direction, and in many cases should be considered. Most
important is the effect of the transverse inertial forces and bending moments in the free vibration
analysis of bridges. These inertial forces may significantly affect the magnitudes of the
eigenfrequencies of bridges. Hence, ignoring these inertial forces may lead to an erroneous
eigenfrequencies of the torsional eigenmodes in particular. Although, a wide range of analytical
and numerical methods are available for the dynamic and free vibration analyses of bridges, many
of them do not consider the transverse deformations effects at all, and others consider them based
on some approximate assumptions. Furthermore, these methods suffer from severe limitations
and applicability. A literature survey is provided ahead, and it includes only papers that deal with
the dynamic analysis of bridges.
In general, many research works deal with the dynamic analysis of multi-cell box and multi-

girder bridges. However, there are only very few approaches these research works can be
categorized in. The first one models the bridge as a classical beam, which uses Bernoulli–Euler
assumptions [1,2]. In this model only vertical deflections and rigid-body rotations are considered.
Hence, some eigenmodes that are controlled by the torsional warping and distortion of the bridge
cross-section cannot be detected by this approach. These eigenmodes yield low frequencies that
affect the dynamic behaviour of bridges. Following the same approach, some research works [3–5]
have introduced the torsional warping effects into the differential equations of motion. A
fundamental contribution to the general solution of this problem was given by Vlasov [6] and
followed by Dabrowski [7]. Timoshenko et al. [8] have presented an analytical solution to the
equations of motion that include the torsional warping effects. However, this method ignores the
transverse inertial forces and the effects of the cross-section distortion. Again, these inertial forces
may lead to a significant reduction in the eigenfrequencies of the torsional eigenmodes
particularly.
The third approach is based on a finite strip idealization of the bridge deck [9,10]. In this model,

it is assumed that the longitudinal behaviour of each strip is a linear combination of the
eigenmodes of a beam with the same boundary conditions as the strip. Here, the transverse
deformations and inertial forces are considered using a cubic interpolation function in the
transverse direction. The main deficiency of this model is the assumption that the cubic
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Fig. 1. Deformation components in bridges: (a) flexure; (b) torsion; (c) distortion and transverse deformations.
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polynomial is accurate for all eigenmodes, which contradicts reality. Hence, a large number of
strips is required to reach a reliable solution. Moreover, the implementation of this approach for
continuous bridges is problematic.
The orthotropic plate approach for the free vibration analysis of bridges [11] is an approximate

one, owing to the assumption of uniform distribution of the mass and the flexural and torsional
rigidities through the width and the length of the bridge. This assumption might be far from the
real one, especially in box bridges, and leads to erroneous results. Furthermore, the application of
this approach for continuous bridges and general boundary conditions is complicated. The fifth
approach is the planar grillage beam (GRID) [12–14]. This approach ignores the out of plane or
the transverse deformations of the longitudinal beams, as well as the flexibility of the equivalent
flanges of the longitudinal beams in the transverse direction. These deficiencies affect the predicted
values of the eigenfrequencies of the bridge.
Huang et al. [15] presented a procedure for obtaining the dynamic response of thin-walled box

bridges. The box girder was divided into a number of thin-walled beam elements in the
longitudinal direction, which include the warping and distortion of the cross-section in an
approximate form. The distortion of the cross-section is described by an additional degree of
freedom, which is the distortional angle of the cross-section (see Ref. [16]). This approach
considers only the effects of the distortion of the cross-section on the longitudinal normal and
shear stresses, while the effects of the associated transverse inertial forces involved with the
distortion action are not considered in this approach.
The last approach is the finite element model. In most cases, a three-dimensional finite element

model may offer a comprehensive treatment with the free vibration analysis of bridges [17,18].
The transverse deformations in this model are considered by using shell elements for modelling
the slab and the longitudinal girders. The FE model is a general numerical tool that is complicated
for use when parametric studies are of concern.
The literature survey reveals that the aforementioned traditional methods commonly used

for the static and dynamic analysis of bridges, are inaccurate for the free vibration analysis
of bridges in general, and for thin-walled box bridges in particular. The deficiency of these
models is due to their approximate treatment of the effects of the transverse inertial forces,
and due to their severe limitations and applicability. In this study, a general mathematical
approach for the free vibration analysis of multi-girder and multi-cell box bridges that is
based on a variational approach is developed, and it considers the transverse inertial forces
in an accurate form. The variational principle of virtual work is used to derive the field
and governing equations of motion, and their associated boundary and continuity conditions.
The model fulfills any kind of boundary and continuity conditions and is applicable for
multi-girder bridges with cross beams, for multi-cell box bridges, and for composite construction
of bridges. In the analysis, the bridge is modelled as made of plates or panels that
are interconnected through equilibrium and compatibility in the longitudinal and transverse
directions. Each panel undergoes four kinds of deformations: longitudinal, in-plane deflection,
out-of-plane deflection and a Saint-Venant type of torsion. Hence, each panel behaves
as a unidirectional plate in the transverse direction and as a classical beam that follows
the Bernoulli–Euler assumptions in the longitudinal direction. It is important to indicate
that the slab is divided into a number of sub-slabs in the transverse analysis, where each
sub-slab is bounded by two longitudinal beams or by one beam and the free edge of the
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slab. While in the longitudinal analysis, it is assumed that the slab behaves as a single beam
that follows the Bernoulli–Euler assumptions. This modelling of bridges enables the warping and
the distortion of the bridge cross-section to be included in an accurate form. It is assumed that the
deformations are small. In addition, since most bridges are composed of precast concrete girders,
it is assumed that the cross beams in multi-girder bridges are able to transfer only shear forces
between the longitudinal beams. The effects of the longitudinal vibrations and the rotary inertia
have been neglected.
The mathematical formulation is presented ahead, and it includes the equations of motion for a

general multi-girder and multi-cell box bridge, as well as the associated boundary and continuity
conditions. The mathematical formulation is followed by some numerical examples that include:
(1) comparison between the results of the proposed model and those of other models that appear
in the literature survey; (2) numerical study of the effect of transverse deformations on the
magnitudes of the eigenfrequencies; (3) validation of the proposed model results through
comparison with three-dimensional finite element results. Summary and conclusions appear in the
sequel.

2. Mathematical formulation

The variational calculus of virtual work is used to formulate only two models for two types of
bridges for the sake of brevity and simplicity, although it is possible to formulate a general model
for bridges with a general cross-section. The first model deals with the free vibration behaviour of
multi-girder bridges, which include cross beams through the length of the bridge, and the second
one discusses the free vibration behaviour of general multi-cell box bridges. The mathematical
formulation includes the derivation of the field and governing equations of motion, along with the
boundary and continuity conditions.

2.1. Multi-girder bridges

The geometry, and sign convention of the co-ordinates and the deformations of a multi-girder
bridge appear in Fig. 2, where y and z are local co-ordinates for each panel, and measured
downwards from the centroid of each panel in the transverse and longitudinal directions, x is a
global longitudinal co-ordinate. Notice that Fig. 2 describes a specific case of a continuous bridge
with four longitudinal beams and one cross beam. However, the mathematical formulation is
general, and the equations of motion and the boundary/continuity conditions are valid for any
type of multi-girder bridges with a general layout.
The equations of motion and the boundary/continuity conditions are rigorously derived via the

variational principle of energy minimization following Hamilton’s principle, which requires:

d
Z t2

t1

ðT � UÞ dt ¼ 0; ð1Þ

where T is the kinetic energy, U is the internal potential energy, d is the variational operator and t

is the time co-ordinate.
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The first variation of the kinetic energy, which includes in-plane and out-of-plane inertial
forces, as well as rotary inertia due to local torsion of the panels equals

dT ¼
Z

x

ms
x ’v

sd’vs dx þ
Z

x

Z
y

ms
y ’w

sd ’ws dy dx þ
Z

x

rsI s
p
’fsd ’fs dx

þ
Xnb

i¼1

Z
x

mi
x ’v

id’vi dx þ
Z

x

Z
y

mi
y ’w

id ’wi dy dx þ
Z

x

riI i
p
’fid ’fi dx

� �

þ
Xncr

j¼1

Z
y

mcrj
y ’vcrjd’vcrj dy; ð2Þ

where the superscript s denotes all quantities related to the slab, the superscript i ¼ 1; 2;y; nb

denotes all quantities related to each longitudinal beam, where nb is the number of the
longitudinal beams, the superscript crj ð j ¼ 1; 2;y; ncrÞ denotes all quantities related to each
cross beam, where ncr is the number of the cross beams, mj ð j ¼ x; yÞ is the mass per unit length in
the x and y direction, r is the mass density, Ip is the polar moment of inertia and ð�Þ denotes a
derivative with respect to time.
The first variation of the potential energy equals

dU ¼
Z

V s

ss
xxde

s
xx dV þ

Z
V s

ts
xydg

s
xy dV þ

Z
Vs

ts
xzdg

s
xz dV þ

Xns

k¼1

Z
Vsk

ssk
yyde

sk
yy dVsk

þ
Xnb

i¼1

Z
Vi

si
xxde

i
xx dV þ

Z
Vi

ti
xydg

i
xy dV þ

Z
V i

ti
xzdg

i
xz dV þ

Z
Vi

si
yyde

i
yy dV

� �

þ
Xncr

j¼1

Z
V

crj

scrj
yyde

crj
yy dV þ

Z
x

Xnb

i¼1

d½lu
i ðu

iðyi
tÞ � usðys

i ÞÞ� dx

þ
Z

x

Xns

k¼1

d lts

k fsk �
vk�1 � vk

ys
k�1 � ys

k

� �� �
dx þ

Z
x

Xnb

i¼1

d ltb

i fi �
vs

yi
t

� �� �
dx

þ
Z

x

Xnb

i¼1

d½lb
i ðw

iðyi
tÞ þ vsÞ� dx þ

Z
x

Xnb

i¼1

d½ls
i ðw

sðys
i Þ � viÞ� dx

þ
Xncr

j¼1

Xnb

i¼1

d½lcr
i; jðv

iðLjÞ � vcrj ðys
i ÞÞ�; ð3Þ

where eii and sii ði ¼ x; yÞ are the longitudinal and transverse strains and normal stresses,
respectively, in each panel, gxi and txi ði ¼ y; zÞ are the shear strains and stresses, respectively,
due to longitudinal torsion of each panel relative to its centroid, u is the longitudinal
deformation of each panel along the nodal lines, w is the out-of-plane deflection, v is the
in-plane deflection, f is the torsional angle, V is the volume of each panel, l are
Lagrange multipliers that impose identical deformations and fulfill the compatibility
conditions between the various constituents of the structure (see Fig. 2 and a detailed description
next), ecr

yy and scr
yy are the strain and normal stress through the length of each cross beam, vcr is the

vertical deflection of each cross beam. In order to fulfill the compatibility requirements between
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the constituents of the structure, the slab is divided into ns sub-slabs in the transverse analysis,
while each sub-slab is bounded by two longitudinal beams or by one beam and the free edge of the
slab, and is denoted by the superscript sk ðk ¼ 1; 2;y; nsÞ: Similarly, each cross beam is divided
into ns beams. It is important to indicate that the transverse axial deformations in the local y

direction of each panel are neglected.
The kinematic and constitutive relations for each panel in the transverse and longitudinal

directions using Hooke’s law, are

eyy ¼ �zw;yy ; exx ¼ uo;x � yv;xx ; ð4; 5Þ

gxy ¼ �zf;x ; gxz ¼ yf;x ; ð6Þ

sxx ¼ Eexx; syy ¼ Eeyy; ð7Þ

txy ¼ Ggxy; txz ¼ Ggxz; ð8Þ

where E is the modulus of elasticity, G is the shear modulus, uo is the longitudinal deformation at
the centroid of each panel, ð Þ;x and ð Þ;y denote differentiation with respect to x and y; respectively.
The kinematic and constitutive relations for each cross beam are

ecr
yy ¼ �yv;cr

yy ; scr
yy ¼ Ecrecr

yy; ð9Þ

where Ecr is the modulus of elasticity of each cross beam. It is assumed that the cross beams are
capable to transfer only shear forces between the longitudinal beams (see Fig. 2e).
The variational formulation is applied for each panel separately, along with the use of

Lagrange multipliers that constrain compatibility conditions between the various constituents
of the structure. Four necessary compatibility conditions that interconnect the panels are
considered.
1. Longitudinal deformations compatibility between the longitudinal beams and the slab, through

the nodal lines. Thus

uiðy ¼ yi
tÞ ¼ usðy ¼ ys

i Þ; ð10Þ

where uiðy ¼ yi
tÞ is the longitudinal deformation of the ith longitudinal beam at its upper interface

(see Eq. (11) ahead), yi
t is the vertical co-ordinate of the upper interface of the ith longitudinal

beam measured downwards from its centroid (see Fig. 2a), usðy ¼ ys
i Þ is the longitudinal

deformation of the slab at the ith nodal line (see Eq. (11)) and ys
i is the horizontal co-ordinate of

the ith nodal line measured rightwards from the centroid of the slab (see Fig. 2a). Thus

uiðy ¼ yi
tÞ ¼ ui

ox � yi
tv;

i
x ; usðy ¼ ys

i Þ ¼ us
ox � ys

i v;
s
x : ð11Þ

These compatibility conditions are fulfilled through the introduction of Lagrange multipliers
lu

i ðxÞ; ði ¼ 1;y; nbÞ into the potential energy of the structure (see Eq. (3)). Actually, each
Lagrange multiplier represents the longitudinal shear flow between the ith beam and the slab
along the ith nodal line (see Fig. 2b).
2. Rotation compatibility between the slab and the longitudinal beams. It is assumed that the

torsion of each sub-slab and longitudinal beam depends on the in-plane deflections of
the constituents of the structure only. Thus, the torsional angle of each sub-slab is determined
by the differential vertical deflections of its bounded beams (Eq. (12)), and the torsional angle of
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each beam is determined by the in-plane deflection of the slab (Eq. (13)), and they read

fsk ¼
ðvk�1 � vkÞ
ðys

k�1 � ys
kÞ
; fi ¼

vs

yi
t

: ð12; 13Þ

These compatibility conditions are considered through the use of Lagrange multipliers lts

i ðxÞ and
ltb

i ðxÞ; see Eq. (3), which are distributed torsional moments through the length of the bridge (see
Fig. 2d).
3. Transverse compatibility at the nodal lines in z and y directions. The horizontal deflection of

each longitudinal beam at its interface with the slab must equal the horizontal deflection of the
slab, and in addition the vertical deflection of each longitudinal beam must be identical to that of
slab at the nodal line. Hence, these compatibility conditions read

wiðy ¼ yi
tÞ ¼ �vs; wsðy ¼ ys

i Þ ¼ vi: ð14; 15Þ

These conditions are imposed by Lagrange multipliers lb
i ðxÞ and ls

i ðxÞ (see Eq. (3)), where l
b
i ðxÞ is

the out-of-plane shear force in the ith longitudinal beam at the ith nodal line (see Fig. 2c), and
ls

i ðxÞ is the out-of-plane shear force in the slab at the ith nodal line (see Fig. 2c).
4. Vertical deflections compatibility between the longitudinal beams and the cross ones at the

connection location. Thus

viðx ¼ LjÞ ¼ vcrðy ¼ ys
i Þ: ð16Þ

Discrete Lagrange multipliers lcr
i; j; ði ¼ 1;y; nb; j ¼ 1;y; ncrÞ are introduced (see Eq. (3)) in order

to impose this condition (see Fig. 2e).
The governing equations of motion, as well as the boundary and continuity conditions are

derived using Eqs. (1)–(3), along with the use of the kinematic and constitutive relations (4)–(9).
Hence, after some algebraic manipulations and integration by parts, the governing equations of
motion in the transverse direction of each sub-slab and longitudinal beam read

ms
y .w

s � Ms
yy;yy ¼ 0; rIs

p
.fs � Ms

t;x þ lts

i ¼ 0; ð17; 18Þ

mi
y .w

i � Mi
yy;yy ¼ 0; rI i

p
.fi � Mi

t;x þ ltb

i ¼ 0; ð19; 20Þ

where Mm
t and Mm

yy; ðm ¼ s; iÞ are the torsional and transverse bending moments, respectively, in
each sub-slab and longitudinal beam.
The governing equations of motion in the longitudinal direction are as follows:

�Ns
xx;x �

Xnb

i¼1

lu
i ¼ 0; ð21Þ

ms
x .v

s � Ms
xx;xx þ

Xnb

i¼1

½�lu
i;xys

i � ltb

i =yi
t þ lb

i � ¼ 0; ð22Þ

�Ni
xx;x þ lu

i ¼ 0; ð23Þ

mi
x .v

i � Mi
xx;xx þ lu

i;xyi
t �

lts

iþ1

ðys
i � ys

iþ1Þ
þ

lts

i

ðys
i�1 � ys

i Þ
� ls

i ¼ 0; ð24Þ
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where Nk
xx and Mk

xx; ðk ¼ s; iÞ are the stress resultants and the bending moments in the
longitudinal direction of the slab and each longitudinal beam, respectively.
The equation of motion of each cross beam equals

mcr
y .vcr � Mcr

yy;yy ¼ 0; ð25Þ

where Mcr
yy is the bending moment of each cross beam.

The boundary and continuity conditions are as follows:
At the edges of the slab (y ¼ ys

b and y ¼ ys
t ; see Fig. 2a) they read

Ms
yy ¼ 0 or w;sy ¼ 0; ð26Þ

Ms
yy;y ¼ 0 or ws

y ¼ 0: ð27Þ

At the bottom of each longitudinal beam (y ¼ yi
b; see Fig. 2a) they read

Mi
yy ¼ 0 or w;iy ¼ 0; ð28Þ

Mi
yy;y ¼ 0 or wi

y ¼ 0: ð29Þ

At each nodal line they read

Msi
yyðy

s
i Þ � Mi

yyðy
i
tÞ þ Msiþ1

yy ðys
i Þ ¼ 0; ð30Þ

w;si
y ðys

i Þ � w;siþ1
y ðys

i Þ ¼ 0; ð31Þ

w;iy ðy
i
tÞ þ w;si

y ðys
i Þ ¼ 0; wsi

y ðy
s
i Þ � wsiþ1

y ðys
i Þ ¼ 0; ð32; 33Þ

wsiðys
i Þ ¼ vi; wiðyi

tÞ ¼ �vs; ð34; 35Þ

�Msi
yy;yðy

s
i Þ þ ls

i þ Msiþ1
yy;yðy

s
i Þ ¼ 0; ð36Þ

�Mi
yy;yðy

i
tÞ þ lb

i ¼ 0: ð37Þ

The boundary conditions in the longitudinal direction at x ¼ 0 and L; read

Ns
xx þ

Xnb

i¼1

Ni
xx ¼ 0 or us

o ¼ 0; ð38Þ

Ms
xx þ

Xnb

i¼1

Ni
xxys

i ¼ 0 or v;sx ¼ 0; ð39Þ

Ms
xx;x þ

Xnb

i¼1

½lu
i ys

i þ Mi
t=yi

t� ¼ 0 or vs ¼ 0; ð40Þ

�Mi
xx þ Ni

xxyi
t ¼ 0 or v;ix ¼ 0; ð41Þ

Mi
xx;x � lu

i yi
t � Msi

t =ðy
s
i�1 � ys

i Þ þ M
siþ1
t =ðys

i � ys
iþ1Þ ¼ 0 or vi ¼ 0: ð42Þ
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The continuity conditions at x ¼ Lj; where a typical cross beam is located, are

Ns;left
xx þ

Xnb

i¼1

Ni;left
xx ¼ Ns;right

xx þ
Xnb

i¼1

Ni;right
xx ; ð43Þ

�Ms;left
xx �

Xnb

i¼1

Ni;left
xx ys

i ¼ �Ms;right
xx �

Xnb

i¼1

Ni;right
xx ys

i ; ð44Þ

v;s;left
x ¼ v;s;right

x ; ð45Þ

Ms;left
xx;x þ

Xnb

i¼1

½lu;left
i ys

i þ M
i;left
t =yi

t� ¼ Ms;right
xx;x þ

Xnb

i¼1

½lu;right
i ys

i þ M
i;right
t =yi

t�; ð46Þ

vs;left ¼ vs;right; ð47Þ

�Mi;left
xx þ Ni;left

xx yi
t ¼ �Mi;right

xx þ Ni;right
xx yi

t; ð48Þ

v;i;left
x ¼ v;i;right

x ; ð49Þ

Mi;left
xx;x � lu;left

i yi
t � M

si;left
t =ðys

i�1 � ys
i Þ þ M

siþ1;left
t =ðys

i � ys
iþ1Þ þ lcr

i; j

¼ Mi;right
xx;x � lu;right

i yi
t � M

si ;right
t =ðys

ri�1
� ys

ri
Þ þ M

siþ1;right
t =ðys

i � ys
iþ1Þ: ð50Þ

The boundary conditions at y ¼ ys
b and y ¼ ys

t of each cross beam are

Mcr
yy ¼ 0 or v;cr

y ¼ 0; ð51Þ

Mcr
yy;y ¼ 0 or vcr ¼ 0: ð52Þ

The continuity conditions of each field in every cross beam, read

Mcri
yy ¼ Mcriþ1

yy ; v;cri
y ¼ v;criþ1

y ; ð53; 54Þ

vcri ¼ vcriþ1 ; vcri ¼ vi; ð55; 56Þ

�Mcri
yy;y þ lcr

i; j þ Mcriþ1
yy;y ¼ 0: ð57Þ

The free vibration problem is solved for harmonic behaviour in time of expðiotÞ; where i is the
imaginary unit and o is the eigenfrequency. Thus the governing equations of motion of the free
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vibration are replaced by algebraic and linear differential equations that are solved analytically in
a closed form. The eigenfrequencies and the eigenmodes are determined through the use of
Newton–Raphson method.

2.2. Multi-cell box bridges

The equations of motion and the boundary/continuity conditions of a general multi-cell box
bridge without internal diaphragms are derived via the variational principle of virtual work,
following the procedure described in the previous section, with the neglect of the local torsional
rigidity of each panel along the bridge. The geometry, and sign convention of the co-ordinates and
the deformations appear in Fig. 3. The kinematic and constitutive relations used here, are the
same as in the previous chapter.
The compatibility conditions required here are as follows:
1. Longitudinal deformations compatibility between the various structure constituents through the

nodal lines.

uiðy ¼ yi
tÞ ¼ uusðy ¼ yus

i Þ; ð58Þ

uiðy ¼ yi
bÞ ¼ ulsðy ¼ yls

i Þ; ð59Þ

where

uiðy ¼ yi
tÞ ¼ ui

ox � yi
tv;

i
x ; uusðy ¼ yus

i Þ ¼ uus
ox � yus

i v;us
x ; ð60; 61Þ

uiðy ¼ yi
bÞ ¼ ui

ox � yi
bv;ix ; ulsðy ¼ yls

i Þ ¼ uls
ox � yls

i v;lsx ; ð62; 63Þ

the superscript us denotes all quantities related to the upper slab, the superscript ls
denotes all quantities related to the lower slab, the superscript i ¼ 1; 2;y; np denotes all
quantities related to each side panel, while np is the number of the side panels, yus

i and yls
i are the

horizontal co-ordinates of the upper and lower interfaces of the ith side panel, measured
rightward from the centre of the upper and lower slabs respectively, see Fig. 3a. These
compatibility conditions are introduced by the use of Lagrange multipliers lu;us

i ðxÞ and lu;ls
i ðxÞ;

which describe the shear flow between the slabs and the ith side panel along the nodal lines, see
Fig. 3b.
2. Transverse compatibility at the nodal lines in z and y directions. A relation between the out-of-

plane deflections and the in-plane deflections of the panels at the nodal lines is describes herein.
For this purpose, consider a general case of two inclined panels (see Fig. 4a). The out-of-plane
deflections of the two panels at the nodal lines (wi;i and wi;i�1) involved due to in-plane
displacements vi are illustrated in Fig. 4b, and equal to

wi;i�1 ¼ �
vi

sinðbi�1 � biÞ
; wi;i ¼ �

vi

tanðbi�1 � biÞ
: ð64Þ

While those involved due to in-plane displacements vi�1 are described in Fig. 4c, and
equal to

wi;i�1 ¼
vi�1

tanðbi�1 � biÞ
; wi;i ¼

vi�1

sinðbi�1 � biÞ
: ð65Þ
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In the case of a multi-cell box bridge (see Fig. 3), the following compatibility conditions exist at
each nodal line:

wiðy ¼ yi
tÞ ¼ �

vus

sinðbiÞ
þ

vi

tanðbiÞ
; ð66Þ
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wiðy ¼ yi
bÞ ¼

vi

tanðbiÞ
�

vls

sinðbiÞ
; ð67Þ

w jðy ¼ y
j

i Þ ¼ �
v j

tanðbiÞ
þ

vi

sinðbiÞ
; ð68Þ

where ð j ¼ us; lsÞ: These compatibility conditions are imposed by Lagrange multipliers
lt

iðxÞ; l
b
i ðxÞ; l

us
i ðxÞ; l

ls
i ðxÞ: Actually, the Lagrange multipliers are the shear forces of the panels

and the slabs at each nodal line, due to transverse bending see Fig. 3c.
For brevity, the first variations of the kinetic and potential energies are not presented.

The equations of motion that govern the transverse behaviour of each side panel and
sub-slab are

m j
y .w j � M j

yy;yy ¼ 0; j ¼ us; ls; i: ð69Þ

The upper and lower slabs are divided into nus and nls sub-slabs, respectively, in the transverse
behaviour analysis; where usk ðk ¼ 1; 2;y; nusÞ designates each upper sub-slab, and lsk ðk ¼
1; 2;y; nlsÞ designates each lower sub-slab.
The equations of motion in the longitudinal direction of the upper and lower slabs, as well as of

each side panel, are as follows:

�Ni
xx;x þ lu;us

i þ lu;ls
i ¼ 0; ð70Þ
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mi
x .v

i � Mi
xx;xx þ lu;us

i;x yi
t þ lu;ls

i;x yi
b �

lt
i

tanðbiÞ
�

lus
i

sinðbiÞ
�

lb
i

tanðbiÞ
�

lls
i

sinðbiÞ
¼ 0; ð71Þ

�Nus
xx;x �

Xnp

i¼1

lu;us
i ¼ 0; ð72Þ

mus
x .vus � Mus

xx;xx þ
Xnb

i¼1

½�lu;us
i;x yus

i þ lt
i=sinðbiÞ þ lus

i =tanðbiÞ� ¼ 0; ð73Þ

�Nls
xx;x �

Xnp

i¼1

lu;ls
i ¼ 0; ð74Þ

mls
x .v

ls � Mls
xx;xx þ

Xnp

i¼1

½�lu;ls
i;x yls

i þ lb
i =sinðbiÞ þ lls

i =tanðbiÞ� ¼ 0: ð75Þ

The transverse boundary conditions of the upper slab at y ¼ yus
t and yus

b ; see Fig. 3a, are

Mus
yy ¼ 0 or w;us

y ¼ 0; ð76Þ

Mus
yy;y ¼ 0 or wus ¼ 0: ð77Þ

The transverse continuity conditions along the upper nodal lines are

Musi
yy ðy

us
i Þ � Mi

yyðy
i
tÞ þ Musiþ1

yy ðyus
i Þ ¼ 0; ð78Þ

w;usi
y ðyus

i Þ � w;usiþ1
y ðyus

i Þ ¼ 0; ð79Þ

w;iy ðy
i
tÞ þ w;usi

y ðyus
i Þ ¼ 0; ð80Þ

wusi
y ðyus

i Þ � wusiþ1
y ðyus

i Þ ¼ 0; ð81Þ

wiðyi
tÞ ¼ �

vus

sinðbiÞ
þ

vi

tanðbiÞ
; ð82Þ

wusiðyus
i Þ ¼ �

vus

tanðbiÞ
þ

vi

sinðbiÞ
; ð83Þ

�Musi
yy;yðy

us
i Þ þ lus

i þ Musiþ1
yy;y ðyus

i Þ ¼ 0; ð84Þ

�Mi
yy;yðy

i
tÞ þ lt

i ¼ 0: ð85Þ

The transverse continuity conditions along the lower nodal lines are

Mlsi
yyðy

ls
i Þ � Mi

yyðy
i
bÞ þ Mlsiþ1

yy ðyus
i Þ ¼ 0; ð86Þ

w;lsi
y ðyls

i Þ � w;lsiþ1
y ðyls

i Þ ¼ 0; w;iy ðy
i
bÞ þ w;lsi

y ðyls
i Þ ¼ 0; ð87; 88Þ

wlsi
y ðyls

i Þ � wlsiþ1
y ðyls

i Þ ¼ 0; ð89Þ
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wiðyi
bÞ ¼

vi

tanðbiÞ
�

vls

sinðbiÞ
; ð90Þ

wlsðyls
i Þ ¼

vi

sinðbiÞ
�

vls

tanðbiÞ
; ð91Þ

�Mlsi
yy;yðy

ls
i Þ þ lls

i þ Mlsiþ1
yy;y ðy

ls
i Þ ¼ 0; ð92Þ

�Mi
yy;yðy

i
bÞ þ lb

i ¼ 0: ð93Þ

The longitudinal boundary conditions at the slabs ð j ¼ us; lsÞ read

N j
xx ¼ 0 or u j

o ¼ 0; ð94Þ

M j
xx ¼ 0 or v; j

x ¼ 0; ð95Þ

M j
xx;x �

Xnp

i¼1

lu; j
i y

j
i ¼ 0 or v j ¼ 0: ð96Þ

For each panel ði ¼ 1;y; npÞ they read

Ni
xx ¼ 0 or ui

o ¼ 0; ð97Þ

Mi
xx ¼ 0 or v;ix ¼ 0; ð98Þ

Mi
xx;x þ lu;us

i yi
t þ lu;ls

i yi
b ¼ 0 or vi ¼ 0: ð99Þ

The solution procedure of the free vibration problem in this case is similar to that of
multi-girder bridges.

3. Numerical examples

Four numerical examples are presented and discussed. The results of each example are
presented in terms of eigenfrequencies and eigenmodes. The results are compared with other
results that have been determined by different mathematical models that appear in the literature,
in order to examine the accuracy of such approximated models. Validation of the proposed model
is achieved through comparison with three-dimensional finite element models. The numerical
examples consist of: a simply supported bridge with a channel cross-section; a multi-girder bridge
with cross beam; a simply supported and a continuous single-cell box bridge.

ARTICLE IN PRESS

E. Hamed, Y. Frostig / Journal of Sound and Vibration 279 (2005) 699–722 713



3.1. Example 1: simply supported bridge with a channel cross-section

Geometry and mechanical properties of the bridge, as well as sign convention of the proposed
model appear in Fig. 5a. The bridge is simply supported at two rigid diaphragms. The main
purpose of this case is to examine the effect of the transverse deformations on the eigenfrequencies
of the bridge. In order to perform such investigation, the structure is solved by the proposed
model and is compared with the classic beam theory, which takes into account torsional warping
effects and neglects transverse deformations effects [8].
The first two eigenfrequencies and eigenmodes that are determined by the beam model appear

in Fig. 5b. It is seen that the first eigenmode is the first vertical flexural mode with an
eigenfrequency that equals: f1 ¼ 21:6356 Hz; and the second mode includes coupled horizontal
flexure and torsional vibrations with eigenfrequency that equals: f2 ¼ 23:7686 Hz: The results of
the proposed model appear in Fig. 5c, in terms of the eigenfrequencies and the normalized
eigenmodes. The results reveal that the inclusion of the transverse deformations in the analysis
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causes the first eigenmode to be a coupled flexural and torsional mode, as opposed to the beam
model. It also changes the first eigenfrequency to: f1 ¼ 17:1517 Hz; which is about 30% less than
that of the beam model. Hence, the transverse deformations drastically affect the eigenfrequency
of the torsional eigenmode, and cause it to become the fundamental one. The influence of the
transverse deformations on the vertical flexure eigenfrequency is much smaller (2%).
The results of the proposed model have been validated by comparison with the results of three-

dimensional finite element model using ANSYS Version 5.7, with standard four-nodes shell
elements. The FE model includes 8364 degrees-of-freedom, as shown in Fig. 6. The boundary
conditions are modelled by imposing zero displacements in the y–z plane for all the nodes at the
longitudinal edges of the bridge. The results of the FE model and those of the proposed model
agree very well. Hence, using the classical beam theory for the modelling of even narrow bridges is
erroneous.

3.2. Example 2: multi-girder bridge

The geometry of the bridge considered, is the one used by Wang et al. [12], and it appears in
Fig. 7. The spatial weight of the concrete is r ¼ 25:7 kN=m3: The mechanical properties are
defined based on some other papers by the authors. Wang et al. [12] have determined the
eigenfrequencies using the grillage beam model (GRID). The sign convention of the current
example is illustrated in Fig. 8a. The results of the proposed model appear in Fig. 8b, and are
verified through comparison with three-dimensional FE modelling of the bridge. The results of the
three models (proposed model, GRID, FE) are summarized in Table 1. It should be noted that all
the torsional mode shapes are coupled with horizontal flexure of the bridge (see Fig. 8b).
The results of the proposed model and those of the FE model compare well and reveal that the

torsional mode shape becomes the fundamental eigenmode of the bridge, while the results of the
GRID model indicate that the torsional mode is related to the second eigenmode. This significant
contradiction between the results is due to the fact that the GRID model uses equivalent
longitudinal rigidity of the longitudinal beams, and does not consider their out-of-plane
displacements. The results indicate that the eigenfrequency of the torsional eigenmode is reduced
by about 12% when considering the transverse deformations of the structure. Furthermore, the
second eigenmode of torsion that is indicated by the FE and the proposed models is not within the
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Fig. 6. Finite element model: (a) geometry and elements mesh; (b) first eigenmode (torsion); (c) second eigenmode

(vertical flexure).
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first four eigenmodes of the bridge in the GRID model. Notice that all eigenfrequencies that were
determined by the GRID model are much higher than those of the proposed one, except for the
eigenfrequency of the first vertical flexure. It means that the GRID model describes a much stiffer
structure than the real one, and yields unreliable eigenfrequencies.
Please notice, that there is a very good correlation between the results of the FE model and the

proposed one, except for the eigenfrequency of the transverse deformations mode shape. This is
due to the fact that in the proposed model, it is assumed that the cross beam connection with the
longitudinal beams is able to transfer only shear forces, while the FE and GRID models assume a
rigid connection between the beams. It is important to indicate that in reality, this connection is
not a rigid one, and the type of connection used in the proposed model is more appropriate and
conservative.
The results of the bridge without a cross beam appear in Table 2, in order to validate that the

difference between the FE results and the proposed model in the transverse deformation
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eigenmode is only due to different modelling of the connection of the cross beam. In this case, the
results are compared with the equivalent orthotropic plate model [19]. Here, a very good
agreement exists between the FE results and those of the proposed model for all eigenmodes. The
results of the equivalent orthotropic plate model agree very well in the first two lower
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eigenfrequencies, while large discrepancies exist in the higher ones. These discrepancies are due to
the fact that the equivalent orthotropic plate model assumes uniform distribution of the rigidity
and the mass through the width and the length of the bridge separately, which is far from the
actual distribution.

3.3. Example 3: simply supported single-cell box bridge

The case discussed here consists of the geometry and mechanical properties of the bridge that
appears in Ref. [15], and are described in Fig. 9a. Huang et al. have determined the
eigenfrequencies and eigenmodes of the bridge by the finite element method according to the
theory of thin-walled beams [16]. The warping torsion and distortion have been considered in
their analysis. However, the distortion is considered in an approximated form, through a
distortional angle of the cross-section. This modelling of the distortion ignores the transverse
bending moments and the transverse inertial forces involved with the distortion of the cross-
section. The results of the proposed model are presented in Fig. 9b and Table 3, and are verified
through comparison with three-dimensional FE model using four-node shell elements.
The results of the proposed model and the thin-walled beam model agree well in the lower

eigenfrequencies (first and second frequencies), and differ considerably in the higher eigenmodes.
The results of the FE model correlate very well with those of the proposed model. This case
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Table 1

Eigenfrequencies and modes of a simply supported multi-girder bridge with cross beam

Mode shape Eigenfrequency (Hz)

GRID [12] Proposed model Finite element

Vertical flexure 4.917 4.975 4.933

Torsion 5.455 4.787 4.86

Transverse deformation 16.167 12.213 15.395

Second torsion – 16.47 16.333

Second vertical flexure 20.326 17.661 16.745

Table 2

Eigenfrequencies and modes of a simply supported multi-girder bridge without a cross beam

Mode no. Mode shape Eigenfrequency (Hz)

Proposed model Finite element Orthotropic plate

1 Torsion 4.907 4.962 5.147

2 Vertical flexure 5.088 4.989 5.015

3 Transverse deformation 7.365 7.663 6.455

4 Second transverse deformation 12.655 11.991 10.986

5 Second torsion 16.471 16.219 20.187

6 Second vertical flexure 17.661 16.242 20.060

E. Hamed, Y. Frostig / Journal of Sound and Vibration 279 (2005) 699–722718



ARTICLE IN PRESS

(a)
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Fig. 9. A single-cell box bridge: (a) geometry, mechanical properties and sign convention; (b) eigenmodes and deformed

section at critical location.

E. Hamed, Y. Frostig / Journal of Sound and Vibration 279 (2005) 699–722 719



reveals that the thin-walled beam model proposed by Huang et al. [15], underestimates the high
eigenfrequencies of single-cell box bridges, especially in the torsional eigenmodes. However, in
bridges with a different layout, the torsional eigenmodes may become the lower ones, which may
drastically affect the dynamic behaviour of the bridge.

3.4. Example 4: continuous single-cell box bridge

This case is presented in order to describe the capability of the proposed model. The bridge
scheme appears in Fig. 10a. It consists of the same cross-section, as well as the same mechanical
properties of the previous case (see Fig. 9a). The results of the proposed model appear in Fig. 10b.
The results of the proposed model compared with those of the FE model appear in Table 4, and
reveal good comparison.

4. Summary and conclusions

The free vibration behaviour of multi-girder and multi-cell box bridges, including transverse
deformations effects has been presented. The governing equations of motion and the boundary
and continuity conditions are derived using the variational principle of virtual work following
Hamilton’s principle. The model is valid for any combination of boundary and continuity
conditions, and is applicable for any multi-girder bridges with cross beams and for multi-cell box
bridges. Lagrange multipliers are included in order to impose identical deformations of the
various constituents of the structure (slab and beams) through the nodal lines, and to fulfill other
compatibility requirements. Here, warping and distortion of the bridge cross-section are
considered accurately. Closed-form solution for the governing equations of motion has been
achieved, and the eigenfrequencies are determined using the Newton–Raphson method.
Numerical examples have been presented to validate the proposed model, and to examine the

accuracy of other approximate models that appear in the literature, such as: the beam model;
the GRID model; the equivalent orthotropic plate model; and the thin-walled beam model. The
conclusions that have been drawn in regard to these methods appear in Section 3 (numerical
examples). Validation of the proposed model has been achieved through comparison with three-
dimensional finite element models using four-node standard shell elements, which in all cases
indicates a very good correlation.
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Table 3

Eigenfrequencies and modes of a simply supported single-cell box bridge

Mode shape Eigenfrequency (Hz)

Thin-walled beam [15] Proposed model Finite element

Vertical flexure 3.22 3.172 3.203

Horizontal flexure 6.644 6.294 6.135

Second vertical flexure 12.983 12.067 11.265

Torsion 14.961 11.860 11.160

Second torsion 19.975 15.184 15.482
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Finally, it should be noted that the conventional dynamic design of bridges assumes that the
vertical flexural eigenmode is the fundamental one, which differ from reality and affects the safety
of the structure. The results of the proposed model reveal that the transverse deformations
significantly reduce the eigenfrequencies of multi-girder and multi-cell box bridges, and in some
cases it caused the torsional eigenmodes to become the fundamental ones. Hence, in order to
achieve reliable bridges, it is recommended to consider the transverse deformations in the static
and dynamic analysis of bridges.
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Fig. 10. A continuous single-cell box bridge: (a) plane view; (b) eigenmodes and deformed section at critical location.
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Table 4

Eigenfrequencies and modes of a continuous single-cell box bridge

Mode no. Mode shape Eigenfrequency (Hz)

Proposed model Finite element

1 Vertical flexure 3.877 3.840

2 Horizontal flexure 7.692 7.264

3 Vertical flexure 8.911 8.326

4 Torsion 12.002 11.325

E. Hamed, Y. Frostig / Journal of Sound and Vibration 279 (2005) 699–722722


	Free vibrations of multi-girder and multi-cell box bridges with transverse deformations effects
	Introduction
	Mathematical formulation
	Multi-girder bridges
	Multi-cell box bridges

	Numerical examples
	Example 1: simply supported bridge with a channel cross-section
	Example 2: multi-girder bridge
	Example 3: simply supported single-cell box bridge
	Example 4: continuous single-cell box bridge

	Summary and conclusions
	References


